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Motivation

Targeted application: compressible fluid flow (e.g., captive-carry)

• Desired numerical properties of ROMs:

• Consistency (w.r.t. the continuous PDEs).
• Stability: if full order model (FOM) is stable, ROM should be stable.
• Convergence: requires consistency and stability.
• Accuracy (w.r.t. FOM).
• Efficiency.
• Robustness (w.r.t. time or parameter changes).
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This talk focuses on remedying “mode truncation instability” problem 
for projection-based (POD/Galerkin) compressible flow ROMs.



Projection-based model order reduction

Governing equations

• 3D compressible Navier-Stokes equations in primitive specific volume form:

(1)

𝜁,𝑡 + 𝜁,𝑗𝑢𝑗 − 𝜁𝑢𝑗,𝑗 = 0

𝑢𝑖,𝑡 + 𝑢𝑖,𝑗𝑢𝑗 + 𝜁𝑝,𝑖 −
1

𝑅𝑒
𝜁𝜏𝑖𝑗,𝑗 = 0

𝑝,𝑡 + 𝑢𝑗𝑝,𝑗 + 𝛾𝑢𝑗,𝑗𝑝 −
𝛾

𝑃𝑟𝑅𝑒
𝜅 𝑝𝜁 ,𝑗 ,𝑗

−
𝛾 − 1

𝑅𝑒
𝑢𝑖,𝑗𝜏𝑖𝑗 = 0

[PDEs]
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Projection-based model order reduction

Governing equations

• 3D compressible Navier-Stokes equations in primitive specific volume form:

(1)

𝜁,𝑡 + 𝜁,𝑗𝑢𝑗 − 𝜁𝑢𝑗,𝑗 = 0

𝑢𝑖,𝑡 + 𝑢𝑖,𝑗𝑢𝑗 + 𝜁𝑝,𝑖 −
1

𝑅𝑒
𝜁𝜏𝑖𝑗,𝑗 = 0

𝑝,𝑡 + 𝑢𝑗𝑝,𝑗 + 𝛾𝑢𝑗,𝑗𝑝 −
𝛾

𝑃𝑟𝑅𝑒
𝜅 𝑝𝜁 ,𝑗 ,𝑗

−
𝛾 − 1

𝑅𝑒
𝑢𝑖,𝑗𝜏𝑖𝑗 = 0

• Spectral discretization* 𝒒(𝒙, 𝑡) ≈ σ𝑖=1
𝑛 𝑎𝑖 𝑡 𝑼𝑖(𝒙) + Galerkin

projection applied to (1) yields a system of 𝑛 coupled quadratic ODEs:

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳𝒂 + 𝒂𝑇𝑸(1)𝒂 + 𝒂𝑇𝑸(2)𝒂 +⋯+ 𝒂𝑇𝑸(𝑛)𝒂 𝑇 (2)[ROM]

[PDEs]

where 𝑪 ∈ ℝ𝑛, 𝑳 ∈ ℝ𝑛×𝑛 and  𝑸(𝑖) ∈ ℝ𝑛×𝑛 for all 𝑖 = 1, … , 𝑛.

* Here we use a Proper Orthogonal Decomposition (POD) basis 𝑼𝑖(𝒙). 
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Projection-based model order reduction
ROM limitations due to basis truncation

Projection-based MOR necessitates truncation.
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Projection-based model order reduction
ROM limitations due to basis truncation

Projection-based MOR necessitates truncation.

• POD is, by definition and design, biased towards the large, energy producing
scales of the flow (i.e., modes with large POD eigenvalues).

• Truncated/unresolved modes are negligible form a data compression point of 
view (i.e., small POD eigenvalues) but are crucial for the dynamical 
equations.

• For fluid flow applications, higher-order modes are associated with energy 
dissipation⟹ low-dimensional ROMs are often inaccurate and sometimes 
unstable.

For a ROM to be stable and accurate, the 
truncated/unresolved subspace must be accounted for.

Turbulence Modeling
(traditional approach)

Subspace Rotation
(our approach)
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Accounting for modal truncation

Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using 
an additional linear term:

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳𝒂 + 𝒂𝑇𝑸 1 𝒂 + 𝒂𝑇𝑸 2 𝒂 +⋯+ 𝒂𝑇𝑸 𝑛 𝒂 𝑇
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Traditional linear eddy-viscosity approach

• Dissipative dynamics of truncated higher-order modes are modeled using 
an additional linear term:

𝑑𝒂

𝑑𝑡
= 𝑪 + 𝑳 + 𝑳𝜈 𝒂 + 𝒂𝑇𝑸 1 𝒂 + 𝒂𝑇𝑸 2 𝒂 +⋯+ 𝒂𝑇𝑸 𝑛 𝒂 𝑇

• 𝑳𝜈 is designed to decrease magnitude of positive eigenvalues and increase 
magnitude of negative eigenvalues of 𝑳 + 𝑳𝜈 (for stability).

• Disadvantages of this approach:

1. Additional term destroys consistency between ROM and Navier-
Stokes equations.

2. Calibration is necessary to derive optimal 𝑳𝜈 and optimal value is flow 
dependent.

3. Inherently a linear model → cannot be expected to perform well for 
all classes of problems (e.g., nonlinear).
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Accounting for modal truncation

Proposed new approach

Instead of modeling truncation via additional linear term, model the truncation 
a priori by “rotating” the projection subspace into a more dissipative regime
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Illustrative example
• Standard approach: retain only the most energetic POD modes, i.e., 𝑼1, 𝑼2,

𝑼3, 𝑼4, …
• Proposed approach: choose some higher order basis modes to increase 

dissipation, i.e., 𝑼1, 𝑼2, 𝑼6, 𝑼8, …
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Accounting for modal truncation

Proposed new approach

(3)

Instead of modeling truncation via additional linear term, model the truncation 
a priori by “rotating” the projection subspace into a more dissipative regime

Illustrative example
• Standard approach: retain only the most energetic POD modes, i.e., 𝑼1, 𝑼2,

𝑼3, 𝑼4, …
• Proposed approach: choose some higher order basis modes to increase 

dissipation, i.e., 𝑼1, 𝑼2, 𝑼6, 𝑼8, …

• More generally: approximate the solution using a linear superposition 
of 𝑛 + 𝑝 (with 𝑝 > 0) most energetic modes: 

෩𝑼𝑖 = σ𝑗=1
𝑛+𝑝

𝑋𝑖𝑗 𝑼𝑗,   𝑖 = 1, … , 𝑛,

where 𝑿 ∈ ℝ 𝑛+𝑝 ×𝑛 is an orthonormal (𝑿𝑇𝑿 = 𝑰𝑛×𝑛) “rotation” matrix.
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Accounting for modal truncation

Goals of proposed new approach

Find 𝑿 such that:

1. New modes ෩𝑼 remain good approximations of the flow 

→ minimize the “rotation” angle, i.e., minimize 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹

2. New modes produce stable and accurate ROMs.

→ ensure appropriate balance between energy production and 
energy dissipation.
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Accounting for modal truncation

Goals of proposed new approach

Find 𝑿 such that:

1. New modes ෩𝑼 remain good approximations of the flow 

→ minimize the “rotation” angle, i.e., minimize 𝑿 − 𝑰 𝑛+𝑝 ,𝑛 𝐹

2. New modes produce stable and accurate ROMs.

→ ensure appropriate balance between energy production and 
energy dissipation.

• Once 𝑿 is found, the result is a system of the form (2) with: 

𝑄
(𝑖)

𝑗𝑘← σ𝑠,𝑞,𝑟=1
𝑛+𝑝

𝑋𝑠𝑖𝑄
(𝑠)

𝑞𝑟𝑋𝑞𝑟𝑋𝑟𝑘 , 𝑳 ← 𝑿𝑇𝑳𝑿,     𝑪 ← 𝑿𝑇𝑪∗
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Accounting for modal truncation

Minimal subspace rotation: trace minimization on Stiefel manifold

• 𝒱 𝑛+𝑝 ,𝑛 ∈ 𝑿 ∈ ℝ 𝑛+𝑝 ×𝑛: 𝑿𝑇𝑿 = 𝑰𝑛, 𝑝 > 0 is the Stiefel manifold.

• Constraint is traditional linear eddy-viscosity closure model ansatz → involves 
overall balance between linear energy production and dissipation / vanishing 
of averaged total power (= tr(𝑿𝑇𝑳𝑿) + energy transfer). 

• 𝜂 ∈ ℝ: proxy for the balance between linear energy production and 
energy dissipation (calculated iteratively using modal energy).

• Equation (9) is solved efficiently offline using the method of Lagrange 
multipliers (Manopt MATLAB toolbox).

• See (Balajewicz, Tezaur, Dowell, 2016) and Appendix slide for Algorithm.

(9)
minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛

− tr 𝑿𝑇𝑰 𝑛+𝑝 ×𝑛

subject to tr 𝑿𝑇𝑳𝑿 = 𝜂
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Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an a priori consistent
formulation of the eddy-viscosity turbulence modeling approach.
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Accounting for modal truncation

Remarks

Proposed approach may be interpreted as an a priori consistent
formulation of the eddy-viscosity turbulence modeling approach.

• Advantages of proposed approach: 

1. Retains consistency between ROM and Navier-Stokes equations →
no additional turbulence terms required.

2. Inherently a nonlinear model → should be expected to outperform 
linear models.

3. Works with any basis and Petrov-Galerkin projection.

• Disadvantages of proposed approach:

1. Off-line calibration of free parameter 𝜂 is required.
2. Stability cannot be proven like for incompressible case.
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Applications

Channel driven cavity: low Reynolds number case 

Flow over square cavity at Mach 0.6, Re = 1453.9, Pr = 0.72 ⇒
𝑛 = 4 ROM (91% snapshot energy).

Figure 1: Domain and mesh for viscous channel driven cavity problem.
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Channel driven cavity: low Reynolds number case 

Applications

Figure 2: (a) evolution of modal energy, (b) phase plot of first and second temporal basis 
𝑎1(𝑡) and 𝑎2(𝑡), (c) illustration of stabilizing rotation showing that rotation is small: 
𝑿−𝑰 𝑛+𝑝 ,𝑛 𝐹

𝑛
= 0.188, 𝑿 ≈ 𝑰 𝑛+𝑝 ,𝑛

-- standard 
ROM (n=4)
− stabilized 
ROM (n=p=4)
− DNS
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Applications

Channel driven cavity: low Reynolds number case 

Figure 3: Pressure power spectral density (PSD) at location 𝒙 = (2,−1); 
stabilized ROM minimizes subspace rotation.

-- standard 
ROM (n=4)
− stabilized 
ROM (n=p=4)
− DNS
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Applications

Channel driven cavity: moderate Reynolds number case 

Figure 4: Domain and mesh for viscous channel driven cavity problem.

Flow over square cavity at Mach 0.6, Re = 5452.1, Pr = 0.72 
⇒ 𝑛 = 20 ROM (71.8% snapshot energy).
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Applications

Channel driven cavity: moderate Reynolds number case 

Figure 5: (a) evolution of modal energy, (b) illustration of stabilizing rotation showing 

that rotation is small: 
𝑿−𝑰 𝑛+𝑝 ,𝑛 𝐹

𝑛
= 0.038, 𝑿 ≈ 𝑰 𝑛+𝑝 ,𝑛

-- standard 
ROM (n=20)
− stabilized 
ROM (n=p=20)
− DNS
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Channel driven cavity: moderate Reynolds number case 

Applications

Power and phase lag at fundamental frequency, and first two super harmonics are 
predicted accurately using the fine-tuned ROM (∆ = stabilized ROM,  = DNS)

Figure 6: Pressure cross PSD of of 𝑝(𝒙1, 𝑡) and 𝑝(𝒙2, 𝑡) where 𝒙1 = 2,−0.5 , 𝒙2 = (0,−0.5)

− stabilized 
ROM (n=p=20)
− DNS
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Summary

• We have developed a non-intrusive approach for stabilizing and fine-
tuning projection-based ROMs for compressible flows.

• The standard POD modes are “rotated” into a more dissipative regime to 
account for the dynamics in the higher order modes truncated by the 
standard POD method.

• The new approach is consistent and does not require the addition of 
empirical turbulence model terms unlike traditional approaches.

• Mathematically, the approach is formulated as a quadratic matrix 
program on the Stiefel manifold.

• The constrained minimization problem is solved offline and small enough 
to be solved in MATLAB.

• The method is demonstrated on several compressible flow problems and 
shown to deliver stable and accurate ROMs.
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Future work

• Application to higher Reynolds number problems.

• Extension of the proposed approach to problems with generic nonlinearities, 
where the ROM involves some form of hyper-reduction (e.g., DEIM, gappy POD).

• Extension of the method to minimal-residual-based nonlinear ROMs.

• Extension of the method to predictive applications, e.g., problems with varying 
Reynolds number and/or Mach number.

• Selecting different goal-oriented objectives and constraints in our optimization 
problem: 

minimize𝑿∈𝒱 𝑛+𝑝 ,𝑛
𝑓(𝑿)

subject to 𝑔(𝑿, 𝑳) = 0

e.g., 
• Maximize parametric robustness: 

𝑓 = σ𝑖=1
𝑘 𝛽𝑖 𝑼∗ 𝜇𝑖 𝑿 − 𝑼∗ 𝜇𝑖 𝐹.

• ODE constraints: 𝑔 = 𝒂 𝑡 − 𝒂∗(𝑡) .
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Appendix: Accounting for modal truncation
Stabilization algorithm: returns stabilizing rotation matrix 𝑿.
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Applications

Channel driven cavity: low Reynolds number case 

Figure 7: Channel driven cavity Re ≈ 1500 contours of 𝑢-velocity at time of final 
snapshot.

Standard 
ROM (𝑛 = 4)

Stabilized ROM 
(𝑛 = 𝑝 = 4)DNS
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Applications

Channel driven cavity: moderate Reynolds number case 

Figure 8: Channel driven cavity Re ≈ 5500 contours of 𝑢-velocity at time of final 
snapshot.

Standard ROM 
(𝑛 = 20)

Stabilized ROM 
(𝑛 = 𝑝 =20)DNS
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Applications

CPU times (CPU-hours) for offline and online computations

Procedure Low Re Cavity Moderate Re 
Cavity

FOM # of DOF 288,250 243,750

Time-integration of FOM 72 hrs 179 hrs

Basis construction (size 𝑛 + 𝑝 ROM) 0.88 hrs 3.44 hrs

Galerkin projection (size 𝑛 + 𝑝 ROM) 5.44 hrs 14.8 hrs

Stabilization 14 sec 170 sec

ROM # of DOF 4 20

Time-integration of ROM 0.16 sec 0.83 sec

Online computational speed-up 1.6e6 7.8e5

o
n

lin
e

o
ff

lin
e

• Stabilization is fast (𝑂(sec) or 𝑂(min)).

• Significant online computational speed-up!
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